Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H2O
نویسندگان
چکیده
[1] Regional tropospheric water balance depends on local mixing rates, moistening and precipitation efficiency associated with cloud processes, and large-scale moisture advection. Conventional data sets are insufficient to disentangle how these processes affect the regional humidity, and models are limited by their need to parameterize many of the pertinent mechanisms, including precipitation efficiency, evaporation of cloud condensate, and mixing rates. This study provides new insight by constraining a Lagrangian mass balance model with satellite measurements of specific humidity and the HDO/H2O ratio in water vapor. Seasonal estimates of mixing rates, moistening efficiency, isotopic composition of source waters, and effective isotopic fractionation in clouds are calculated. Analysis shows that the water source is dominated by cloud evaporation in the dry subtropics, subcloud rainfall recycling in the humid subtropics, and convective detrainment and postcondensational exchange during tropical monsoons. Moistening efficiency is shown to be as twice as strong over the wintertime subtropics as over other regions. Over monsoonal areas, however, moistening efficiency decreases during times of most intense mixing, since postcondensational exchange and convective recycling effects act to dehydrate and isotopically deplete the local water sources. A robust relationship is found between precipitation efficiency derived from rainfall profile measurements and differences in effective and equilibrium isotopic fractionation rates, suggesting that isotopic observations might enable estimates of this illusive parameter to be inferred directly. In spite of the simple modeling framework employed, the results provide insight in to the gains that can be expected by assimilating satellite observations of isotope ratios into more comprehensive, isotope-enabled general circulation models.
منابع مشابه
Moist processes during MJO events as diagnosed from water isotopic measurements from the IASI satellite
This study aims to investigate some characteristics of the moist processes of the Madden-Julian oscillation (MJO), by making use of joint HDO (or δD) and H2O vapor measurements. The MJO is the main intraseasonal mode of the tropical climate but is hard to properly simulate in global atmospheric models. The joint use of δD-H2O diagnostics yields additional information compared to sole humidity m...
متن کاملMeasured HDO/H2O ratios across the tropical tropopause
[1] We present the first simultaneousmeasurements ofHDO and H2O in the tropical upper troposphere (UT) and lower stratosphere (LS) as derived from infrared solar absorption spectra acquired by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. We find, surprisingly, that the observed HDO/H2O ratio does not decrease with altitude in this region despite a factor of 4–5 decrease in th...
متن کاملThe moisture source sequence for the Madden-Julian Oscillation as derived from satellite retrievals of HDO and H2O
[1] A number of competing theories to explain the initiation mechanism, longevity and propagation characteristics of the Madden-Julian Oscillation (MJO) have been developed from observational analysis of the tropical climate and minimal dynamical models. Using the isotopic composition of atmospheric moisture from paired satellite retrievals of H2O and HDO from the boundary layer and mid troposp...
متن کاملPDFs of Tropical Tropospheric Humidity: Measurements and Theory
The spatial variations in the probability density functions (PDFs) of relative humidity (RH) in the tropical and subtropical troposphere are examined using observations from the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) instruments together with a simple statistical model. The model, a generalization of that proposed by Sherwood et al., assumes the RH is determine...
متن کاملIntraseasonal isotopic variation associated with the Madden‐Julian Oscillation
[1] The Madden‐Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the tropical atmosphere. This study examines the evolution of the hydrologic regime from before the onset of the MJO (pre‐onset period) to the MJO onset period, using deuterated water vapor (HDO) measurements from the Tropospheric Emission Spectrometer (TES) and from ground‐based stations. Ground‐based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013